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FINAL REPORT: DISTRIBUTED SYSYTEMS FOR PROBLEMS IN
ROBUST CONTROL AND VISUAL TRACKING

AFOSR-AF/F49620-98-1-0168

Allen R. Tannenbaum
Department of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

1 Introduction

The objectives of this project have been the development of a novel theoretical basis and
algorithms for the analysis and synthesis of robust and reliable controllers for nonlinear and
possibly distributed feedback systems.The applications include our continuing work in con-
trolled active vision, the use of visual information in guidance and control, associated problems
in visual tracking, motion planning, and the control of remote autonomous vehicles.

Our work has included the use of curvature-driven partial differential equations to explore
problems in controlled active vision. This involves a synthesis of methods from optimal
control, image processing, and computer vision. We have devised a noise-resistant sketelon
for object recognition as well as a new formulation of optical flow derived from the theory
of area-preserving flows. We have explored the combination of statistical methods with our
geometric PDE’s to develop methods in tracking of dynamic SAR imagery. In particular, we
have extended our active contour methods to include more global information making the
procedure much more robust. We have included specific estimation theoretic ideas in our
geodesic snake framework now as well. We have also continued our work in robust nonlinear
control using operator and interpolation theoretic methods as well as considered the use of
computational algebraic geometry for problems in optimal control.

In this AFOSR sponsored project, we have considered the use of active contours or snakes
for problems in visual tracking. Our general approach is based on the theory of geodesics
and minimal surfaces in a conformal geometry. We have introduced some more sophisticated
features into our geometric-based cost function. We are incorporating non-local information
into our models. We have been exploring the use of adaptive filtering schemes and Bayesian
statistics. We also want to couple boundary and region data. One way to do this, is the use
of minimum description length (MDL). We are also considering snake algorithms in higher
co-dimensions for example for the detection of curves in space. All the usual schemes assume
codimension one. Such a program is very important for path-planning. We want to treat
detection and tracking together coupling the gradient snakes and estimating region-based
features via motion detection term we have defined. Closely, connected to this is the work
in the computation of optical flow and in particular weakening the optical flow constraint
with one based on the theory of area-preserving mappings. flow. We are now putting in an
optical flow term in our active contour functional to better track moving images. We are also
considering knowledge-based conformal factors in this context when the number of objects is
known. This also allows the inclusion of Bayesian statistics in our tracking.

We are also continuing to explore the use of differential invariants for object recognition.
This is essential for some of our visual tracking work. When objects or cameras move, the
continued recognition and tracking of the image is a problem of key importance in vision.




Our work on invariant signature manifolds appears particularly well-adapted to this problem,
since the signature manifold remains unchanged even while the object and/or camera is in
motion, provided the motions belong to the symmetry group in question.

Skeletons are a powerful shape descriptor. The main drawback of classical skeletons is
their sensitivity to noise in the object outline. In order to stabilize the skeleton extraction
algorithm, we have developed a robust version of skeletons based on using the affine distance.
We have shown that this new type of skeleton is quite robust to noise and small deformations
of the object. We are using it as one of our key methods of feature extraction for tracking in
our continuing research program.

We have been working on the utilization of Groebner bases techniques for certain problems
in optimal control. As is well-known, time-optimal problems lead to switching surfaces which
typically are defined or may be approximated by polynomial equations. Since the complexity
of the switching surfaces can grow to be quite large, this may become quickly a formidable
task. Here is where new techniques in computational algebraic geometry may become vital in
effectively solving this problem. In our AFOSR sponsored work, we have introduced Groebner
bases in this context which will reduce the problem to a combinatorial one. We believe that
this methodology may be useful in considering some complex matrix perturbation problems
which are connected to antenna array placement.

‘We have been continuing our project on the generalizations of the linear H* methodology
to nonlinear systems. We have extended our ideas to the general standard problem, and are
now working on computer implementations to test on design examples. From a theoretical
standpoint this method has been completely justified. We are also continuing to develop a
global game theoretic approach to nonlinear H* optimization.

We now give some details about some of the key results we have developed in our present
AFOSR grant.

2 Curvature-Driven Flows in Controlled Active Vision

In the past few years, we have become very interested in visual tracking and the general
area of the use of visual information in a feedback loop. This is a central area in which
the multivariable control methods developed over the past twenty years could have a major
impact. In order to work on visual tracking, we have had to develop certain techniques
from image processing and computer vision, which has led to several new research directions.
Indeed, we have been using geometric invariant flows for various problems in active vision.
These flows themselves are very much motivated by ideas in optimal control; see [29]. We will
now discuss some of the key ideas in curve and surface evolution.

2.1 Background on Curve and Surface Evolution

A geometric set or shape can be defined by its boundary. In the case of bounded planar
shapes for example, this boundary consists of closed planar curves. We will only deal with
closed planar curves, keeping in mind that these curves are boundaries of planar shapes.

A curve may be regarded as a trajectory of a point moving in the plane. Formally, we
define a curve C(-) as the map C(p) : ST — R? (where S! denotes the unit circle). We assume
that our curves are have no self-intersections, i.e., are embedded.




We now consider plane curves deforming in time. Let C(p,t) : S 1 % [0,7) — R? denote a
family of closed embedded curves, where ¢ parametrizes the family, and p parametrizes each
curve. Assume that this family evolves according to the following equation:

acg = oﬂ_:-i-ﬂ/\?
{ 5’?13, 0) = Co(p) M)

where N is the inward Euclidean unit normal, T is the unit tangent, and o and ( are the
tangent and normal components of the evolution velocity 7, respectively. In fact, it is easy

to show that Img[C(p, t)] = Img[C(w,1)], where C(p,t) and C(w,t) are the solutions of
Ce =O/f+ﬁ./\7 and ét =,BN,

respectively. (Here Img[-] denotes the image of the given parametrized curve in R2.) Thus the
tangential component affects only the parametrization, and not Img[] (which is independent
of the parametrization by definition). Therefore, assuming that the normal component B of
7 (the curve evolution velocity) in (1) does not depend on the curve parametrization, we can
consider the evolution equation

oc -

where 8=V - N.

The evolution (2) was studied by different researchers for different functions 8. This type
of flow was introduced into the theory of shape in [27, 28]. One of the most studied evolution
equations is obtained for 3 = k, where & is the Euclidean curvature:

ac ~
T kN (3)
Equation (3) has its origins in physical phenomena [2, 22]. Tt is called the geometric heat
equation or the Euclidean shortening flow, since the Euclidean perimeter shrinks as fast as
possible when the curve evolves according to (3). Grayson [22] proved that a planar embedded
non-convex curve converges to a convex one, and from there to a round point. Note that in
spite of the local character of the evolution, global properties are obtained, which is a very
interesting feature of this evolution. For other results related to the Euclidean shortening
flow, see [2, 3, 22].
Another important example is obtained when one sets 8 = 1 in equation (2):

oc -
5 N. (4)
This equation simulates, under certain conditions, the grassfire flow [1 1]. (More precisely,
the unique weak solution of (4) which satisfies the entropy condition [44] gives the grassfire
flow.) This grassfire flow is also the basis of the morphological scale-space defined by the disk
as structuring element. Moreover, one can prove that with different selections of 8, other
morphological scale-spaces are obtained [29].
In (28], we have studied the following equation in order to develop a hierarchy of shape,

%% =(1+ 6&)./\7. (5)




If € — 0 in (5), the grassfire flow is obtained, and this introduces singularities (shocks)
in the evolving curve. (The shocks define the well-known skeleton.) On the other hand, if
€ — 00, equation (5) reduces to the classical Euclidean curve shortening flow, which smoothes
the curve [22, 44]. The combination of these two opposite features gives very interesting
properties. When a curve evolves according to (5), the evolution of the curve slope satisfies
a reaction-diffusion equation [45]. The reaction term, which tends to create singularities,
competes with the diffusion term which tends to smooth the curve. For each different value
of €, a scale-space is obtained by looking at the solution of (5), and considering the time ¢
as the scale parameter. We have called the set of all the scale-spaces obtained for all values
of €, the reaction-diffusion scale-space. In particular, we see that the Euclidean shortening
flow (equation (3)) defines an Euclidean invariant scale-space (the equation admits Euclidean
invariant solutions). In contrast with other scale-spaces, like the one obtained from the clas-
sical linear heat equation, this one is a full geometric scale-space. The progressive smoothing
given by « is geometrically intrinsic to the curve.

We now discuss the affine analogue of the Euclidean shortening flow. (The affine group
SAj is the group generated by unimodular transformations and translations of R2. Under
certain natural conditions, it provides a good approximation to the full group of perspective
projective transformations.) Then in [36, 40], we show that the simplest non-trivial affine
invariant flow in the plane is given by

C: = kPN (6)

The question now is what happens when a non-convex curve evolves according to (6). The
following result answers this question [6]:

Theorem 1 Let C(-,0) : 8! — R? be a smooth embedded curve in the plane. Then there
exists a family C : ST x [0, T) — R? satisfying

Ct = 111/3./\7,

such that C(-,t) is smooth for all t < T, and moreover there is a tg < T such that for all
t > tg, C(-,t) is smooth and convez.

Theorem 1 means that just as in the Euclidean case, a non-convex curve first becomes
convex when evolving according to (6). After this, the curve converges to an ellipse from
our results in [40]. Because of this, and other related properties (see [41]), we can conclude
that equation (6) is the affine analogue of (3) for smooth embedded curves, and thus is called
the affine shortening flow. (It is also the affine invariant formulation of the geometric heat
equation.) One can use it to construct an affine invariant scale-space for planar shapes [41].
This is conjunction with the theory of differential invariants isssential for our work in snvariant
object recognition.

2.2 Visual Tracking

Much of our recent research in image processing and computer vision has been motivated by
problems in controlled active vision, especially visual tracking. We have already described
some of the relevant work in control above, and so we would like to consider now some of the




key tools we plan to employ from our work in computer vision and image processing. These
include active contours, optical low and stereo disparity, and certain results from invariant
theory for invariant object recognition, as well as the curve and surface evolution methodology
sketched in Section 2. We expect these methods to play an integral part in our controlled
active vision research program.

2.2.1 Geometric Active Contours

In this section, we will describe a paradigm for snakes or active contours based on principles
from curvature driven flows and the calculus of variations. Active contours may be regarded
as autonomous processes which employ image coherence in order to track various features
of interest over time. Such deformable contours have the ability to conform to various ob-
ject shapes and motions. Snakes have been utilized for segmentation, edge detection, shape
modeling, and visual tracking. Active contours have also been widely applied for various ap-
plications in medical imaging. For example, snakes have been employed for the segmentation
of myocardial heart boundaries as a prerequisite from which such vital

information such as ejection-fraction ratio, heart output, and ventricular volume ratio can
be computed.

In the classical theory of snakes, one considers energy minimization methods where con-
trolled continuity splines are allowed to move under the influence of external image dependent
forces, internal forces, and certain contraints set by the user. As is well-known there may
be a number of problems associated with this approach such as initializations, existence of
multiple minima, and the selection of the elasticity parameters. Moreover, natural criteria
for the splitting and merging of contours (or for the treatment of multiple contours) are not
readily available in this framework.

In [26], we propose a deformable contour model to successfully solve such problems, and
which will become one of our key techniques for tracking. Our method is based on the
Euclidean curve shortening evolution (see Section 2.1) which defines the gradient direction
in which a given curve is shrinking as fast as possible relative to Euclidean arc-length, and
on the theory of conformal metrics. We multiply the Euclidean arc-length by a conformal
factor defined by the features of interest which we want to extract, and then we compute the
corresponding gradient evolution equations. The features which we want to capture therefore
lie at the bottom of a potential well to which the initial contour will flow. Moreover, our
model may be easily extended to extract 3D contours based on motion by mean curvature
(26, 32].

The starting point of this work is [14, 33] in which a snake model based on the level
set formulation of the Euclidean curve shortening equation is proposed. More precisely, the
model is

or
at
Here the function ¢(z,y) depends on the given image and is used as a “stopping term.” For

example, the term ¢(z,y) may chosen to be small near an edge, and so acts to stop the
evolution when the contour gets close to an edge. One may take [14, 33

b= o
=IF VG, + I
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where I is the (grey-scale) image and G, is a Gaussian (smoothing filter) filter. The function

\Il(:c y,t) evolves in (7) according to the associated level set flow for planar curve evolution

in the normal direction with speed a function of curvature which was introduced in (38, 44].
It is important to note that the Euclidean curve shortening part of this evolution, namely

6\1! v¥
= [|V¥|div( IIV\I’II) (9)

is derived as a gradient flow for shrinking the perimeter as quickly as possible. The constant
inflation term v is added in (7) in order to keep the evolution moving in the proper direction.
Note that we are taking ¥ to be negative in the interior and positive in the exterior of the
zero level set.

We would like to modify the model (7) in a manner suggested by the curve shortening flow.
We change the ordinary arc-length function along a curve C' = (z(p),y(p))T with parameter
p given by

ds = (a3 + ;) dp,

to
dsg = (z2 +y2)?¢dp,

where ¢(z, y) is a positive differentiable function. Then we want to compute the corresponding
gradient flow for shortening length relative to the new metric dsg.
Accordingly set

Lg(t) == / n—-u¢dp

Then taking the first variation of the modified length function Ly, and using integration by
parts (see [26]), we get that

Lg(t) Lo
L) = —/Dd’ (02 6T = (V9 A ds

which means that the direction in which the L4 perimeter is shrinking as fast as possible is
given by

%0~ (gn— (Vo RN (10)

This is precisely the gradient flow corresponding to the miminization of the length functional
Lg. The level set version of this is

8\1! Vv
= ¢[|V¥|ldiv(

IRETRBAANA (11)

One expects that this evolution should attract the contour very quickly to the feature which
lies at the bottom of the potential well described by the gradient flow (11). Wemay also add
a constant inflation term, and so derive a modified model of (7) given by

a\p v
= IV gm) + ) + V- VT (12)




Notice that for ¢ as in (8), V¢ will look like a doublet near an edge. Of course, one may
choose other candidates for ¢ in order to pick out other features.

We now have very fast implementations of these snake algorithms based on level set
methods [38, 44]. Clearly, the ability of the snakes to change topology, and quickly capture
the desired features will make them an indispensable tool for our visual tracking algorithms.
See also [48] for more details about this.

We are also studying an affine invariant snake model for tracking. (The evolution itself
works using a level set model of k13N as discussed in Section 2.1.)

Our methods have been extended to 3D images. Indeed, we have developed affine invariant
volumetric smoothers in [37]. We also have 3D active contour evolvers for image segmentation,
shape modeling, and edge detection based on both snakes (inward deformations) and bubbles
(outward deformations) in our work (26, 32]. We have employed affine smoothers in movies
as a preprocessing tool for motion estimation. We are working on extensions to dynamic
imagery, and the incorporation of more global information for the active contours as well as
utilizing Bayesian statistical models.

3 Invariant Flows

In this section, we will summarize some of our recent AFOSR supported work on the classifi-
cation of invariant geometric flows. It is interesting to note how the calculus of variations and
thus optimal control type techniques plays such a fundamental role in solving this problem.
This is based on our work reported in [37).

3.1 OQutline of Invariant PDE’s

Consider the evolution of hypersurfaces which are assumed to be represented by the graph
of a function. We let the p + 1-dimensional Euclidean space E ~ R? x R, with coordinates
z = («,...,2P) representing the independent variables, and u € R the dependent variable.

The hypersurface S € E will be identified with the graph of a function u(z), defined
on a domain z € D C RP. The symmetry group G will be a finite-dimensional, connected
transformation group acting on E. Each group transformation g € G will map hypersurfaces
to hypersurfaces by point-wise transformation.

In Lie’s theory of symmetry groups, one replaces the actual group transformations by
their infinitesimal generators, which are vector fields on the domain E, taking the general
form

0 0 7] 0 0

Each vector field generates a local one-parameter group of transformations (or flow) on E,
obtained by integrating the associated system of ordinary differential equations

d d
a—i = &(z,u), d—z = p(z,u), (14)

where € represents the group parameter. In other words, the group transformations have the
Taylor expansion

m(s):x—{—ef(z,u)—i—---, u(E)=u+€§0(3§,’LL)+"'. (15)




The order € terms in (15) are known as the infinitesimal group transformations, and can be
identified with the generating vector field (13). The different one-parameter groups combine
to generate the entire connected group action of G.

Fixing the vector field (13), let u(z,e) denote the one-parameter family of hypersurfaces
(functions) obtained from a given hypersurface u(z,0) = u(z) by applying the group transfor-
mation with parameter €. The infinitesimal change in the hypersurface is found by expanding
in powers of ¢ using Taylor’s Theorem and the chain rule. Thus, the value of the transformed
function v at the new point z(¢) is given by

u(z(e), &) = u(z) + ep(z,u(w)) + - -. (16)

On the other hand, if we are interested in the value of the transformed function at the original
point z = x(0), we substitute (15) into (16) to deduce the alternative expansion

u(z,e) = u(z) + eQu(z)] +---. (17)
The function

Ld ou

Q[U] = (p(z’u) - E&i(m>u)—6}§, (18)

i=1

is known as the characteristic of the vector field (13). The characteristic () depends on
first order derivatives u; = Ou/0z" because the group transformations are acting on the
independent variables = as well as the dependent variable u. In particular, a G-invariant
hypersurface is independent of the group parameter €, and hence satisfies the first order
partial differential equation Q(z, u(l)) = 0, indicating its “infinitesimal invariance” under the
vector field v. Conversely, any infinitesimally invariant function, i.e., any solution to the
characteristic equation Q = 0, is, in fact, invariant under the entire connected transformation
group.

Consider the function Flu] = F(z,u(™) depending on z, u, and the derivatives of v,
denoted by uy = Dyu. Here Dy = D; Dy, --- Dy, are the total derivative operators, which
differentiate treating u as a function of . The infinitesimal variation in the function F[u]
under the group generated by the vector field v is then given by

_S %% 50 (19)

d
£F[u(x,€)] 2 5,

e=0

In (19) we evaluate F' and u at the original point x. If we are interested in the value at
the transformed point z(e), we must include an additional term arising from the change of
independent variable, as in the passage from (17) to (16). We deduce the expansion

F(z(e), u(")(x, £)) = F(w,u(”)) +epr v{F)+---, (20)

where
rv(F) = OF b+ > €D;F (21)
p = ~ auJ J i i

defines the “prolongation”of the vector field v, denoted pr v, which forms the infinitesimal
generator of the prolonged group action on the space of derivatives.




A function F(z,u() is called a differential invariant if its value is not affected by the
group transformations. Thus we require that the left hand side of (20) be independent of €.
The infinitesimal invariance condition is obtained by differentiating with respect to €. This
produces

oF :
0=rprv(F)= (-%—JD JQ+> EDiF. (22)
J %

Condition (22), for v an arbitrary infinitesimal generator of G, is necessary and sufficient for
F to be a differential invariant.
A transformation group G is called a symmetry group of a differential equation

F(z,u™) =0 (23)
if it maps solutions to solutions. The differential equation (23) admits G as a symmetry group
if and only if the infinitesimal invariance condition

prv[F] =0 whenever F =0 (24)

holds for all infinitesimal generators of G.

3.2 Invariant Hypersurface Flows

The goal is to determine the general form that a G-invariant evolution equation
Uup = K(x,u(")) (25)

must take. Here we have introduced an additional variable ¢t — the time or scale parameter
— which is not affected by our group transformations.

Thus, for p = 1, we will determine all possible invariant curve evolutions in the plane
under a given transformation group, while for p = 2 we find the invariant surface evolutions.
According to (21), the infinitesimal change in the t-derivative of u at the transformed point
is

Y4
= D;Q + Z&iDiut = Quut, (26)

e=0 i=1

d
E&fut(ma t,E)

where
_ 59_6_2_ Oy Y. o¢t du
T Ou  Ou — Ou Ox*’

Qu (27)

Therefore, using the infinitesimal condition (24), and substituting for u; according to the
equation (25), we deduce the basic invariance condition that an evolution equation must
satisfy in order to admit a prescribed symmetry group.

Lemma 1 A connected transformation group G is a symmetry group of the evolution equation
us = K|u] if and only if the infinitesimal condition

prv(K) = QuK (28)

holds for every infinitesimal generator v of the group G with associated characteristic Q.




To discover a G-invariant evolution equation for an arbitrary group, we consider the G-
invariant functionals. An n—th order variational problem consists of finding the extremals
(maxima or minima) of a functional

Lplu] = /DL(m,u("))d:v = /DL(a:,u("))alx1 A...NdP, (29)

subject to certain boundary conditions.

The integrand L[u] = L(z, u(™), known as the Lagrangian, is a smooth function depending
on z, u and the derivatives of u. A transformation group G is a symmetry group of a
variational problem provided it leaves the functional (29) invariant.

More precisely, given a function u(z) defined on a domain D, and a one-parameter sub-
group of G, we let u(x, ) denote the transformed function, which is defined on a transformed
domain D(¢). Invariance of the functional requires that Lp[u(z,€)] = Lplu(z)]. Using
the standard Jacobian change of variables formula for multip{e integrals, the infinitesimal
invariance condition is then found by differentiating:

d
0 = HELD(E)[U(QI,E)] o

_ (_jg /D Lu(z(e), £)] det {3‘;;5)] do

= /D [pr v(L) + Ldiv €] dz . (30)

e=0

Here div £ = Y D;¢ is the total divergence arising from the infinitesimal change in the
independent variables.

Lemma 2 A connected transformation group G a symmetry group of the variational problem
[ Ldz if and only if every infinitesimal generator v satisfies the infinitesimal condition

prv(L)+ Ldiv £ =0. (31)

The smooth extremals (maxima and minima) of a variational problem are known to satisfy
the classical Euler-Lagrange equation,

BL)= ) (—D)J%=o, a=1,...,q (32)

where (—=D); = (=Dj,)(=Dj,)---(—Dj,) is the signed total derivative. This condition is
the infinite-dimensional analog of the vanishing gradient condition for maxima and minima
of ordinary functions. The Euler-Lagrange equation is obtained by taking the variational
derivative of the functional. For example, if £ represents the G-invariant arc-length or surface
area functional, the Euler-Lagrange equation will describe the G-invariant minimal curves or
surfaces. In general, the invariance of a variational problem under a given transformation
group implies the invariance of its Euler-Lagrange equation. (The converse, however, is not
true.) We will be interested in precisely how the Euler-Lagrange equation varies, and this is
the result of the following key lemma.

10




Lemma 3 Let pr v be the prolonged vector field (21). Let L(z,u™) be a Lagrangian. Then
E(pr v(L) + Ldiv €) = pr v(E(L)) + (Qu + div £) E(L). (33)

From this, we can construct invariant evolution equations. Suppose that L is a G-invariant
Lagrangian, e.g., defining the group invariant arc length or area. Then L satisfies the infinites-
imal invariance condition (31), and hence (33) implies the identity

pr v[E(L)] + (div ¢ + Qu)E(L) = 0. (34)
Equation (34) means that E(L) is a relative differential invariant of weight —div { — Qu. In
particular, the Euler-Lagrange equation E(L) = 0 is invariant under G, as claimed. On the
other hand [ itself is a relative invariant of weight —div £. Since the prolonged vector field
pr v acts as a derivation, the ratio E(L)/L is a relative differential invariant weight —Qu,
i.e., it satisfies

E(L) E(L)] _
prv [—L—:I + Qu [ 7| = 0. (35)
Consequently, its reciprocal L/E(L) (assuming E(L) # 0) satisfies (28) and defines a G-
invariant evolution equation. We have therefore deduced our fundamental theorem from [37}:

Theorem 2 Let G be a transformation group, and let Ldx be a G-invariant Lagrangian
with non-identically zero Euler-Lagrange derivative E(L). Then every G-invariant evolution

equation has the form
L
=]
“=Em " (36)
where I is a arbitrary differential invariant of G.

Although (36) defines the most general class of invariant evolution equations, the case
when the differential invariant I is constant is not necessarily the simplest one. In the planar
Euclidean case, L = /1 + u2 is the Euclidean arc length Lagrangian, so that

oL Ups
BL) = ~Degy, = " ru2y ~

Thus the general Euclidean-invariant evolution equation has the form

I
’U,tz'—\/l-f"ll%;,

where I is an arbitrary function of x and its arc length derivatives. Choosing I =  produces
the simplest one (eikonal equation), while I = k2 produces the Euclidean curve shortening
flow.

One can also deduce the following:

—K.

Proposition 1 Suppose G is a connected transformation group, and Ldx a G-invariant
p-form such that E(L) # 0. Then E(L) is a differential invariant if and only if G is volume-
preserving.

Corollary 1 Let G be a connected volume preserving transformation group. Then, up to
constant multiple, the G—invariant flow of lowest order has the form

Uy = L, (37)
where w = Ldz! A ... A dzP is the invariant p—form of minimal order such that E(L) # 0.
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3.3 Affine invariant surface flows

We apply the preceding results to describe the simplest possible affine invariant surface evo-
lution. This gives, for convex surfaces, the surface version of the affine shortening flow for
curves. The group G is the (special) affine group SL(3,R), consisting of all 3 x 3 matrices with
determinant 1, combined with the translations. Let S be a smooth strictly convex surface in
R3, which we write locally as a graph u = u(z, y).

The simplest affine-invariant area-form is constructed from the affine-invariant metric,
which is given by [37]

Ldx Ady = kM4 /1 +u2 +u2 dz A dy,

where

2
UggUyy — uzy

K= —————.
(T4 u2 +u2)?”’
denotes the usual Gaussian curvature of S. Corollary 1 allows us to conclude:

Corollary 2 Up to constant multiple, the simplest affine-invariant evolution equation has
the form

up = M4 1+ ul +ud. (38)

4 Nonlinear Robust Control

Under AFOSR support, we have worked extensively in nonlinear robust control. Besides
the theoretical and practical questions involved in finding an implementable nonlinear design
methodology, it is interesting to note that certain associated problems of causality have arisen
in this area, which we would like to briefly indicate as well. In fact, as a result of this effort,
we have been able to put an explicit causality constraint in commutant lifting theory for the
first time [16, 18, 21].

There have been several attempts to extend dilation theoretic techniques to nonlinear
input/output operators, especially those which admit a Volterra series expansion. Typically,
one is reduced to applying the classical (linear) commutant lifting theorem to an H 2_space
defined on some D" (where D denotes the unit disc). Now when one applies the classical
result to D™ (n > 2), even though time-invariance is preserved, causality may be lost. Indeed,
for analytic functions on the disc D, time-invariance implies causality. For analytic functions
on the n—disc (n > 1), this is not necessarily the case. Consequently, for a dilation result
in H?(D™) we need to include the causality constraint explicitly in the set-up of the dilation
problem. We will discuss a way of doing this now based on [21, 17, 18].

4.1 Nonlinear Interpolation

We now formulate a Causal Commutant Lifting Theorem that is suitable for control applica-
tions, in particular the full standard problem. It forms the basis of our research in nonlinear
interpolation.
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For the standard problem in robust control theory we may extract the following mathe-
matical set-up. We are given complex separable Hilbert spaces £1, &2, F1, F2 equipped with
the unilateral shifts Sg,, Sg,, S7,, S7,, respectively. Let ©; : & — F1 be a co-isometry inter-
twining Sg, with Sz, (i.e., ©15¢, = Sz ©1), and let O3 : F2 — & be an isometry intertwining
Sg, with Sz,. We let Ug,, be the minimal unitary dilation of Sg, on K¢, , and similarly for
Ug, on Kg,, Ur, on K, and Uz, on Kg,.

Now let

P = (I 8,58, PE) = (I-S%,S%), n>0.

We let the sequence Pg) define the causal structure on &;, and similarly the causal structure
of F» is defined by the sequence P}z). Moreover, the causal structure on & is defined by a

general sequence of operators Pl("), n > 0, satisfying the standard causal structure conditions

[21], and similarly the causal structure on 77 is defined by a sequence of operators P2(n), n >0,
satisfying these conditions as well. We assume that the input/putput operators ©;, ©g, are
causal with respect to the above structures. We let W : £ — &3 denote a causal operator
intertwining Sg, with Sg,, and let Q@ : 71 — F2 be a causal operator intertwining Sr, with

S%,-
Define
M = (1= PM™&, Vn>0,

and
W, = SEW e,

Moreover, let

£ §c) 1(ca)

where

oo
g = | Juged c Ke,, SE = Us, €Y.
j=0

Finally, we define W, : El(co) — &, by

Weg := Wagn,
for g = Ugtgn, gn € 51("), n > 0.

Note that we can make a similar construction on the spaces &, F1, F2. In particular, for
a causal Q : F1 — F2, such that QSz = S5,Q, we can define Q. : fl(co) — F2, where

o0
Fh = | JUg 2.
§=0

Next, it is easy to see both W, and Q. extend by continuity to the closure Sl(c), respectively
Fl(c) = .7-'1(00). Clearly, we also have

IWell = [Wl, Welé1 =W, WSS = Sg,We,
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and |[W — ©2Q01[ = ||[(W — ©2Q01).||. Now set
w(W,01,02) := inf{||W — ©2Q01]| : QSr, = Sr,Q}.
This corresponds to the classical standard control problem. We also set
(W, 01, 02) := inf{||W — ©2Q01] : Q causal, QSr, = S£,Q}.

This is the causal standard control problem.
Let & : Ke, — Kz, denote the extension of the co-isometry 01 : & — Fi, that is
uniquely defined by
é1U§1n61 = U}’f@lel, Ve € &7.

Note that ©; is also isometric and élUgl =U j.'lé]_.
We can now state the following key result [19]:

Theorem 3 Notation as above.
1. (W, ©1,03) = p(We, 011617, ©2).
2. Qopt is a causal optimal solution, i.e.,
1e(W,©1,02) = [[W — ©1Q0p:Os
if and only if Qopt,c is such that
H(We, 611€(%,03) = W — ©2Q0p,O1[€1.

Finally, let us recall how the classical standard problem can be solved using the commutant
lifting theorem. Set

Ho= &9 6 (61l e,
Ho = &6 OyF.
Let P : £ — Hs denote orthogonal projection. Then we define the operator

A =AW, 01|69, 09) : Hy — Ha, (39)

by
Ah = PW:h, h€Hy. (40)
Then using the commutant lifting theorem, one may show that
1Al = p(We, ©1]€(, ©2).
Thus from the above theorem, we have the following result:

Corollary 3 Notation as above. Then

1e(W, 01, 05) = [|A(W, 0116, 02)]|.

Thus we see that Theorem 3 and Corollary 3, allow one to reduce a causal optimization
problem to one involving classical interpolation.

This leads to an explicit computable solution of the nonlinear standard problem based
on an iterative interpolation procedure. The computations are based on our previous skew
Toeplitz methodology that we developed for distributed H* control. See [17, 18, 19].
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4.2 Game Theory and Nonlinear Optimization

We have previously developed an iterative commutant lifting approach to nonlinear system
design. The iterative communtant lifting technique is basically a local analytic method for
nonlinear system synthesis. We have also been exploring a very different approach applicable
to certain systems with saturations (and “hard” noninvertible nonlinearities) based on a
game-theoretic interpretation of the classical commutant lifting theorem. This motivates
us to formulate a nonlinear commutant lifting result in such a saddle-point, game-theoretic
framework.

A related approach to nonlinear design has already been employed by a number of re-
searchers; see [9, 10, 25, 49] and the references therein. As is well known, game theoretic
ideas have already been extensively applied in linear H* theory. In our research, instead of
considering general nonlinear systems we have limited ourselves to the concrete (but certainly
interesting case) of linear systems with input saturations. Such systems are, of course, essen-
tial for many practical applications. We should add that a similar approach is valid for many
of the hard, memoryless, noninvertible nonlinearities which appear in control.

In order to motivate our game-theoretic approach to nonlinear H*, we will first give
a “saddle-point” interpretation of the classical Sarason theorem in a special case. We let
w,m € H® with m inner. Set H(m) := H? © mH?, we let Py(y) : H? — H(m) denote
orthogonal projection, and S(m) denote the compressed shift. We let || || denote the 2-norm
| l2 on H? as well as the associated induced operator norm.

In our recent AFOSR work, prove that

inf sup |[(w—mq)f| = sup inf ||(w—mgq)f|l= sup inf [[w—mgl.
9€H> | 7|<1 £l <19€H IflI<19€H? I

Now it is easy to show there always an optimal g,. We now assume that
lw(S(m)less < llw(S(m))I,

where || |less denotes the essential norm. Then there exists f, € H?, |||l = 1 (a maximal
vector), such that

l(w — mgo)(S(m) foll = llw(S(m) foll = w(Sm)| = [l(w — mgo)(S(m))l]-

Now
PH(m)(w — mgo) fo = (w —mgo)(S(m)) fo = w(S(m)) fo,

(w — mgo) fo = w(S(M)) fo-

So
| (w — mgo) f| < I(w —mgo)(S(m)) foll = l|(w — mgo) foll

for all f € H?, ||| < 1. Moreover,
lw(S(m) foll = l(w — ma)(S(m)) foll < [I(w —mg)foll.

Hence, we get that

l(w = mgo) 1| < l(w = mgo) foll < ||(w — mq) foll (41)
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for all f € H?, ||f|| £ 1, and for all ¢ € H*. It is a nonlinear analogue of the saddle-point
condition (41) that we want to analyze for saturated systems. Indeed, assuming the saddle-
point condition (41), we can derive all of the standard consequences of the Sarason theorem.
Thus it is precisely the existence of a saddle-point which we have treated in this nonlinear
setting.

By virtue of interpretation of the commuting lifting theorem as asserting the existence
of a saddle-point, we have derived a global approach to sensitivity minimization for input
saturated systems. Thus for o, a saturation of magnitude § < 1, and m € H® inner, we
want to know when there exist f, € H?, || f,|| < 1, g, continuous, causal, time-invariant, such
that

l(w =m0 0 @) Il < l(w — mog 0 o) foll < l(w — mag 0 @) fol

for all f € H?, ||f|| < 1, q continuous, causal, time-invariant. Such a g, (when it exists) will
correspond to the optimal compensator, and

p = [[(w —mag o o) foll

will be the optimal performance in the weighted sensitivity minimization problem. But this
is equivalent to finding g, = ¢o(f,) € H? such that

[(w = mag 0 go) fIl < llw(fo) — mae(go)ll < [[(w —mag © ) fol|- (42)

Our approach then has been to follow an analogous line of reasoning which we just outlined
in our analysis of the saddle-point condition in the linear case. This leads to nonlinear
commutant lifting theorem valid on a convezr space which can be used to develop a global
robust design procedure for nonlinear plants with hard nonlinearities.

5 Conclusions

In our work, we we developed a broad research program making use geometric flows, dif-
ferential invariants, computational geometry, and optimization theory, to study several key
problems in systems and control including visual tracking.

We have considered a synthesis of methods from optimal control, image processing, and
computer vision for visual tracking. The approach to computer vision and image processing
is based on certain curvature dependent evolution equations that may be used for image
enhancement, active contours, edge detection, morphology, shape recognition, shape-from-
shading, motion planning, and stereo disparity. A number of the resulting flows have certain-
key invariance properties and so make contact with classical Lie theory. Our efforts can lead
to enhanced man-machine interfaces for interactions with computers and more complicated
systems such as remote controlled weapons and vehicles. Our work has applications ranging
from the airborne laser program, to image-guided surgery, and to automatic target recognition.

Our work in vision is being combined with our longstanding program in distributed and
nonlinear control. Computational geometry has begun to play a large part in this effort.
Indeed, these methods are having an impact on a number of the algorithms we are developing
in controlled active vision as well.
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giou), Proceedings of IEEE CDC"00.

“Robust control and tracking,” Proceedings of IEEE CDC’00.

“Affine invariant symmetry sets” (with S. Betelu and G. Sapiro), Proceedings of ECCV’00,
Dublin, Ireland, June 2000.

“Nondistorting maps for virtual colonoscopy” (with S. Angenent, S. Haker, and R.
Kikinis), Proceedings of SPIE, San Diego, February 2000.

“New approach for visualization of 3D colon imagery” (with S. Angenent, S. Haker, and
R. Kikinis), MICCAI’00.

“Length-based attacks for certain group based encryption rewriting systems” (with J.
Hughes), IMA Pre-Print.

“New algorithms for 3D analysis of open-celled foams,” (with M. Montminy and C.
Macosko), FOAM 2000, New Jersey. Proceedings of SPIE, San Diego, February 2000.

Books Written Under AFOSR Support

1. Feedback Control Theory (with John Doyle and Bruce Francis), MacMillan Company, New
York, 1991.

2. Robust Control of Distributed Parameter Systems (with Ciprian Foias and Hitay C)zbay),
Lecture Notes in Control and Information Sciences 209, Springer-Verlag, New York, 1995.

3. Feedback Control, Uncertainty, and Complezity, edited by Bruce Francis and Allen Tannen-
baum, Lecture Notes in Control and Information Sciences 202, Springer-Verlag, New York,

1995.

4. Curvature Flows, Visual Tracking, and Computational Vision, to be published by STAM.

Patent Filed Based on AFOSR Projects
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“Coonformal Geometry and Texture Mappings,” (co-inventors Sigurd Angenent, Steven Haker,
Allen Tannenbaum, and Ron Kikinis), patent pending.

Students of A. Tannenbaum Supported by AFOSR-AF/F49620-98-1-0168

1. Anthony Yezzi (Ph. D.)
2. Steven Haker (Ph. D.)

Awards of A. Tannenbaum During AFOSR-AF /F49620-98-1-0168

1. George Taylor Research Award (University of Minnesota).
2. Invited Plenary Speaker for IEEE CDC 2000.

3. Plenary Speaker for SIAM Conference on Control 1998.

4

. Best Paper Award in FOAM 2000 Conference for the paper: “New algorithms for 3D
analysis of open-celled foams,” (M. Montminy, A. Tannenbaum and C. Macosko).
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